Introduction

The periglacial and glacial record of southern African mountains has been investigated for over 50 years, starting with a report on needle-ice activity in the Drakensberg by Carl Troll. Since then, interest in periglacial research has grown apace. Most work has focused on the identification and use of relict periglacial landforms as a basis for palaeoenvironmental reconstruction of the high mountain environments of southern Africa. At first, such studies related primarily to the Natal Drakensberg and Lesotho highlands, although Linton recognized what he termed ‘niveo-gelifluction deposits’ in the Drakensberg and Lesotho highlands (included in discussions on this region are the somewhat separate Eastern Cape mountains comprising the Amatolas), and the Western Cape mountains. While literature critical to the main focus of the debates is referred to, it has not been possible to include all material pertaining to glacial and periglacial research in southern Africa; a comprehensive bibliography on the topic has been published.

Present-day frost action and frost environments

Located at relatively low latitudes in the southern hemisphere, present-day southern African frost activity is restricted to high altitude sites (Fig. 1). The two areas where frost action has been studied in most detail are the High Drakensberg and Lesotho mountains, and the Western Cape mountains. These areas have contrasting geological and climatic settings relevant to the assessment of the environmental controls on frost processes. Each is here outlined.

Drakensberg and Lesotho highlands

The Eastern Cape, High Drakensberg, Maluti and Lesotho mountains are the highest regions in southern Africa, with summits over 3000 m a.s.l., rising to 3482 m a.s.l. at the highest point (29°30’S, 29°30’E). These high mountains comprise horizontal sequences of plateau basals that attain a total thickness of over 1500 m. The basaltis weather to a loamy regolith with varying clast abundance, which supports an alpine vegetation of grass and heath communities. Precipitation is strongly seasonal with more than 80% of the mean annual total falling in the summer months between October and March. Snowfalls are seen to occur two to eight times a year on average, but this may be an underestimate as light, localized snowfalls of short duration have been observed even in summer (pers. obs.). Snow can remain on the ground in the High Drakensberg and Lesotho for several months during winter.

The low latitude, high insolation, and clear skies promote strong diurnal heating and large diurnal temperature ranges leading to diurnal frost cycles in winter. Diurnal, and sometimes more prolonged, freezing of the ground is a normal occurrence, but restricted to shaded sites above 3000 m. No direct evidence of modern permafrost has been recorded.

The literature on southern African Quaternary periglacial and glacial studies is qualitative in nature with an apparent lack of scientific rigour. Landforms attributed to being of periglacial and glacial origin exist through a broad belt of high relief from the Western Cape mountains along the Great Escarpment to the Lesotho highlands. Present-day frost action is limited to the surficial action of needle-ice and segregation ice resulting from diurnal to mild seasonal freeze–thaw cycles. Environmental controls on current frost action are still poorly understood for the Lesotho highlands, where frost-induced processes are an important factor in accelerating land degradation. Relict periglacial landforms are most reliably identified in the form of large patterned ground, widespread solifluction mantles and blockstreams. These observations are supported by adjacent information, which together indicate somewhat drier conditions than present. Erosional forms, such as nivation hollows, cirques, and cryoplanation terraces, lack positive evidence and imply wetter conditions than at present. Interpretations suggesting rock glaciers, glacial cirques and former ice wedges at low relative altitudes are highly anomalous with respect to the other periglacial records and proxy data for the region. The limitations of the current research literature suggest that future emphasis should be directed towards sedimentary records by means of clay mineral, soil micro-structural and chemical analysis and dating to improve the reliability and accuracy of the interpretations and their temporal framework.

J.C. Boelhouwers and K.I. Meiklejohn

The Southern African periglacial and glacial geomorphology of southern Africa: review and synthesis

Department of Geography and Geoinformatics, University of Pretoria, Pretoria, 0002

Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa. Present address: Physical Geography, Department of Earth Sciences, Uppsala University, Villavägen 16, S 752 36 Uppsala, Sweden

Department of Geography and Geoinformatics, University of Pretoria, Pretoria, 0002 South Africa.

Author for correspondence. E-mail: jan.boelhouwers@natgeog.uct.ac.za

Quaternary periglacial and glacial geomorphology of southern Africa: review and synthesis

J.C. Boelhouwers* and K.I. Meiklejohn*

*Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa. Present address: Physical Geography, Department of Earth Sciences, Uppsala University, Villavägen 16, S 752 36 Uppsala, Sweden

Department of Geography and Geoinformatics, University of Pretoria, Pretoria, 0002 South Africa.

* Author for correspondence. E-mail: jan.boelhouwers@natgeog.uct.ac.za

The Southern African periglacial and glacial geomorphology of southern Africa: review and synthesis

J.C. Boelhouwers* and K.I. Meiklejohn*

*Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa. Present address: Physical Geography, Department of Earth Sciences, Uppsala University, Villavägen 16, S 752 36 Uppsala, Sweden

Department of Geography and Geoinformatics, University of Pretoria, Pretoria, 0002 South Africa.

* Author for correspondence. E-mail: jan.boelhouwers@natgeog.uct.ac.za

Quaternary periglacial and glacial geomorphology of southern Africa: review and synthesis

J.C. Boelhouwers* and K.I. Meiklejohn*

*Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa. Present address: Physical Geography, Department of Earth Sciences, Uppsala University, Villavägen 16, S 752 36 Uppsala, Sweden

Department of Geography and Geoinformatics, University of Pretoria, Pretoria, 0002 South Africa.

* Author for correspondence. E-mail: jan.boelhouwers@natgeog.uct.ac.za

The Southern African periglacial and glacial geomorphology of southern Africa: review and synthesis

J.C. Boelhouwers* and K.I. Meiklejohn*

*Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa. Present address: Physical Geography, Department of Earth Sciences, Uppsala University, Villavägen 16, S 752 36 Uppsala, Sweden

Department of Geography and Geoinformatics, University of Pretoria, Pretoria, 0002 South Africa.

* Author for correspondence. E-mail: jan.boelhouwers@natgeog.uct.ac.za

Quaternary periglacial and glacial geomorphology of southern Africa: review and synthesis

J.C. Boelhouwers* and K.I. Meiklejohn*
In the Eastern Cape, High Drakensberg, Maluti and Lesotho mountains microforms of sorted and non-sorted patterned ground have been observed. However, spatial information is limited due to the inaccessibility of the high altitude regions, so that the exact distribution of cryogenic activity is likely to be more widespread. The lower limit of present-day frost activity shows a decrease in altitude with increase in latitude, but this distribution may be influenced by lithology and topography in addition to climate.

Current cryogenic activity is dominated by needle-ice and the formation of sorted and non-sorted patterns, resulting from diurnal and seasonal freezing of the ground (Table 1). Turf-banked steps and small stone-banked lobes resulting from solifluction are also evidence for contemporary periglacial activity.

Much of the literature regarding current periglacial activity is limited to descriptive inventories of features, their dimensions and qualitative observations; few process studies have been conducted, and where present, they are isolated and cannot be used for general descriptions of the study area. Extreme caution needs to be exercised in the High Drakensberg and Lesotho mountains, where disturbance of study sites by grazing cattle and sheep sometimes prevents adequate interpretation of field results of movement rates (pers. obs.). Furthermore, during summer, when insolation is high and thunderstorms are regular, the activity of other geomorphic processes (such as wash and fluvial action) should be considered before assigning the formation of landforms and features to periglacial activity (which mainly operates in winter); this has clearly not been done in most of the previous research.

Meteorological data are sparse because recording stations in the mountainous regions of southern Africa provide insufficient coverage. Climatic estimates from these data, for example from the use of four stations covering the whole of the extremely dissected Lesotho landscape for the interpolation of lapse rates, must be used with caution. Only recently have ground and air temperature data been collected at the highest altitudes of the Drakensberg and Lesotho mountains. Even then, while the data presented are all that are available, because of the remote location and the problem of theft of equipment, the methods used are inconsistent with accepted practice. These data may therefore not be relatable to proper meteorological records, and the record itself is not continuous.

Western Cape mountains

The Western Cape mountains form two distinct belts of folded strata parallel and adjacent to the west and south coast of the Western Cape Province. The coastal belt reaches altitudes up to about 1600 m a.s.l., while the interior belt attains a maximum altitude of 2249 m a.s.l. at Matroosberg (33°28′S, 19°40′E). The Palaeozoic quartzitic sandstones of the Table Mountain Group underlie over 90% of the Western Cape mountains, with the remaining lithologies consisting of thin bands of the Silurian Pakhuis tillite and Cederberg shale. The sandstone weathers to a sandy, acidic lithosol, which supports sclerophyllous shrub vegetation known as fynbos. The mountains are located in the winter rainfall zone of southern Africa. Annual rainfall totals vary from 900 mm to well over 2000 mm. High winter precipita-
tion results in snow cover on an average of 31 days a year, but this is highly variable between years. Diurnal frost is limited to 10–20 days a year at altitudes over 1600 m. Sänger was the first to report the occurrence of needle-ice growth and micro-patterned ground at 2000 m a.s.l. at Matroosberg. In a regional assessment, however, Boelhouwers noted a general absence of active soil frost features in the sandstone-derived sediment, which covers over 90% of the mountains. Process monitoring in these lithologies revealed sites to be stable at present with no creep or solifluxion detected over a period of five years. By contrast, isolated shale exposures near summits reveal active sorted micro-patterned ground and turf- and stone-banked steps. Here, needle-ice-induced frost creep occurs in the upper 6 cm of the sediment, which is characteristic of diurnal frost environments.

Discussion

Important environmental contrasts between the Western Cape mountains and Lesotho highlands result in distinct differences in present-day frost activity. Despite their somewhat lower latitude, the greater altitudes and regional extent of the Lesotho highlands result in more severe, and more frequent, frost cycles. This is further aided by contrasts in seasonality of precipitation. The generally clear skies in winter, limited snow cover and low soil moisture conditions aid nocturnal radiation losses, limit thermal insulation, reduce thermal conductivity, and thereby enhance the occurrence of soil surface frost in Lesotho. Here, the absence of soil moisture is the main limiting factor to more widespread and effective frost-induced soil disturbance and mass wasting. Grab suggests that the availability of moisture results in most soil frost activity during autumn and spring. However, a systematic approach to process monitoring, supported by detailed micro-climatic monitoring and analysis of soil physical properties is still largely absent for this region. Understanding of the mechanisms and their environmental controls involved in current frost action in the High Drakensberg and Lesotho highlands is, thus, still limited.

In the Western Cape mountains frost is experienced only immediately after the passage of a cold front and the associated influx of cold maritime polar air. The associated precipitation ensures that soil moisture is not a factor limiting effective soil frost cycles. However, Boelhouwers shows that in the sandstone-derived soils frost intensities are limited by the insulation provided by vegetation, the presence of snow and an efficient thermal insulation afforded by vegetation, the presence of snow and an efficient thermal insulation.
zero-curtain effect. By contrast, shale-derived loams are highly susceptible to frost. In these areas soil disturbance is effective enough to prohibit vegetation from establishing itself and soil frost features dominate the surface.

There is a contrast in the material properties of the mountain regions. The Western Cape mountains are largely blanketied by coarse-grained lithosols with a high clast content. Boelhouwers44 reports on the (generally) non-frost-susceptible sediment in the summit regions under present-day conditions, but describes extensive relict solifluxion mantles and allochthonous blockfields in these materials in the Hex River Mountains45 and where shale-derived sediment is present.17 The solifluxion mantles at Matroosberg may point at the removal of fines from the debris mantles during the Holocene and/or regional facies variations in the sandstone strata. On the other hand, weathering of the Drakensberg basalt results in loam-rich soils, which are highly susceptible to frost. The basalt-derived regolith is well suited for slow mass wasting by frost and is an important contributing factor to the widespread occurrence of the, now relict, solifluxion mantles (see below).

Given the limited frost activity, it is apparent that southern African mountains can be described as being only marginal with respect to active periglacial environments. In the Western Cape, pockets of diurnal soil frost activity occur at altitudes above 1600 m a.s.l, where frost-susceptible regolith is present. In these areas, soil frost processes dominate and control the surface morphology. In the Lesotho highlands and Drakensberg, the larger magnitude of frost-generated landforms points to a more severe, but as yet unquantified, frost environment. It is apparent that for a more complete evaluation of current periglacial activity in the escarpment and Lesotho regions of southern Africa, emphasis should be placed on more systematic surveying of morphology and relevant site parameters, supported by the collection of data relating to periglacial processes and accurate ground climate data. Improved understanding of the current environment is essential before the significance of relict features can be evaluated.

Understanding environmental controls on frost action in southern Africa not only provides an important datum for palaeoenvironmental interpretation of Quaternary periglacial landforms, but also has important applied aspects. Process studies on current soil frost activity can make important contributions to environmental management issues in the Lesotho highlands. Soil frost activity is an important soil disturbance factor in the high mountain catchments that are inhabited by a rural population dependent on grazing stock for their livelihood. In synergy with overgrazing and other biotic activity, frost action reduces the carrying capacity of the highlands for grazing animals. Frost action also contributes to stream bank erosion to increase sediment loads further in rivers.28 Such factors may have significant, but as yet unquantified, effects on the high altitude regions of southern Africa,26 especially that embracing the Lesotho highlands water diversion scheme (which aims to ensure water supply to millions of people in South Africa and Lesotho). A more comprehensive and systematic approach to land degradation issues for southern African mountain communities, important new insights may be achieved in a far shorter time than has been possible to date.

Quaternary periglacial landforms and processes

Despite the marginal nature of current cryogenic activity, it is reasonable to consider that the climate was more severe during the colder periods of the Quaternary. Currently, few proxy data for Quaternary palaeoclimates exist in the higher altitudes of southern Africa. Consequently, a focus of geocryological research has been on the use of relict periglacial features as palaeoenvironmental indicators. However, interpretation of current research has resulted in contradictory evidence for Quaternary palaeoenvironments. For example, certain data suggest a moist periglacial environment, while others indicate an arid one; some data are even used to argue for the existence of marginal, niche, cirque or valley glaciation.

Drakensberg and Lesotho highlands

Evidence for a periglacial environment during colder phases of the Quaternary may be usefully separated into sedimentary or depositional forms, erosional features, and regionally anomalous forms. Sedimentary evidence for periglacial activity generally provides the most significant diagnostic criteria that will allow quantitative analysis and reliable interpretation. In addition, in the Lesotho highlands and Drakensberg such sedimentary forms have a wide distribution and include features that have been identified as patterned ground, solifluxion lobes, gelifluction sheets and lobes, frost-shattered debris, and blockstreams and blockfields (Table 1). Erosional forms provide inconclusive evidence as the principle of equifinality generally applies. Invariably, erosional landform information results in disputed and unverifiable interpretations, such as is the case for cryoplanation terraces across structural benches, asymmetrical valleys and nival cirques (Table 1). Anomalous landforms that have been interpreted on inconclusive datasets, and have led to disputed interpretations, include ice-wedge casts, protalus ramparts and rock glaciers (Table 1).

The evidence for sedimentary landforms above 2900 m a.s.l. indicates that where sufficient regolith is present, large patterned ground forms with widths up to 2 m and vertical sorting down to over 80 cm exist on the interfluvies.9,27 The valley sides display evidence of slow mass flow and creep in the form of solifluxion lobes and sheets, which in many cases mantle the entire valley.12,28,55 Downslope concentration of blocks, derived from cliffs and weathering mantles, results in blockstreams up to 1.6 km long on gradients of less than 10°, displaying distinct fabrics and imbrication (Boelhouwers et al., in prep.).29 None of this evidence is diagnostic for permafrost and is interpreted as associated with deep seasonal frost.26 The occurrence of these widespread valleyfills is considered to be indicative of limited and seasonal snow cover, which is substantiated by most of the published proxy data28 concerning the Last Glacial.

By contrast, southerly valleys with concave backwalls are considered to indicate former periglacial conditions under enhanced snow cover and are referred to as 'nivation hollows' or 'cirques'.41,50–52 While it has been proposed that the hollow forms are ‘bog-cirques’52–54, the absence of significant saprolite at the contact between sediments and bedrock largely discounts this argument.26 Meiklejohn46 (in prep.), however, points out that the orientation of the hollows is structurally controlled. As with the widespread valley asymmetry observed in the highlands, the valley forms are most likely the result of longer slope evolution than that associated with the period of Pleistocene glacials, and are in fact not diagnostic of a periglacial origin.

From the distribution of fossil features in southern Africa, it is apparent that certain anomalies, or outliers, exist with regard to the interpretation of what have been referred to as relict
periglacial landforms. This is particularly the case with several features identified by Linton11 that appear to be misinterpreted.4 In addition, the deposits interpreted as rock glaciers by Lewis and Hanvey25 lack any diagnostic features of such forms and are most likely debris flow deposits (Shakesby, pers. comm.). Similarly, so-called ice-wedge casts32 lack the diagnostics of such forms and occur alongside shear planes in neotectonically affected colluvium. In all these cases the interpretations suggest temperature and precipitation conditions in contrast to the sedimentary periglacial records found at higher altitudes and other proxy evidence from the region.

Western Cape

Cryoclastic debris production

The rock slopes in the Western Cape are typically strength equilibrium slopes with steep cliffs and thick, coarse debris mantles at their footslopes.73 The origins of such coarse clastic materials near sea level at Cape Town were first attributed to frost shattering by Linton.11 Butzer and Helgren14 and Butzer26 reiterated such a hypothesis, based on the angularity of spalls in a cave at sea level on the Cape south coast and were later supported by Lewis.25

Hall26 cautioned against the use of clast angularity as evidence for frost weathering, a point already admitted to by Butzer and Helgren.74 Boelhouwers35 considered alternative modes of mechanical weathering, including salt weathering, thermal stress, hydration, dilatation and the role of seismic activity in triggering rockfalls. Supported by further field observations, Boelhouwers35 concludes that i) fire-induced spalling appears the most important mode of mechanical weathering at present, ii) sporadic seismic activity results in localized rockfall, and iii) sporadic frost wedging may occur at favourable sites on pre-weathered rock at mountain summits.

Boelhouwers35 still argues in favour of frost wedging as the main cause of the high rates of mechanical weathering throughout the region in the Pleistocene. This is based on the circumstantial evidence that large volumes of angular rock fall material are produced throughout the region, superimposed on Tertiary pseudokarst weathering forms. At high altitudes such mechanically fractured rockscarps are intrinsically associated with periglacial blockstreams.55 Observations suggest that a regional change in environmental conditions favoured a change in weathering mode from chemical to mechanical rock breakdown.

These qualitative, landscape-scale observations still rely on clast morphology (especially angularity) as an indicator of dominant weathering environment (that is, frost weathering). Such an interpretation remains, at best, unsupported by most recent weathering process studies. Local lithologies need to be understood in terms of their responses to freeze/thaw conditions under various temperature and moisture regimes. More importantly, careful evaluation is needed to address the dichotomy in approach between the results from detailed weathering process studies and the approaches in Quaternary studies using weathering products as palaeoenvironmental indicators. There is an apparent conflict in methods and outcomes from the two approaches. With each sub-discipline working at one extreme of the space/time spectrum, work is needed to reconcile the two and find common understanding of weathering processes and their products in the landscape and their environmental significance.

Mass wasting

Linton11 describes several sites along the coast near Cape Town displaying coarse diamictons of sandstone-derived debris overlying deeply weathered granite. These diamictons blanket many slopes throughout the region and form infills in valleys cut into the weathered granite in many mountain passes in the Western Cape. Linton16 interprets the deposits as 'a gelifluval sludge', based on the angular and sub-angular nature of the clasts in the debris, and the occurrence of the material on slopes of 13°. This interpretation is strongly rejected by Butzer and Helgren,74 Butzer22 and Verhoef.27 Butzer and Helgren59 relate the deposits near sea level to 'sheetwash, creep and other gravitational mass movement with or without accessory frost generated motion'. No publications to date have provided any detailed sedimentological description of these materials to substantiate either interpretation. Verhoef27 points out it may be difficult to differentiate between snow-meltwater deposits, fluvial sediments and deposits produced by a combination of freeze/thaw and snow. Although the debris covers are mostly present as single units of uniform and massive diamictons, Butzer62 describes two units of coarse debris on the Cape south coast, interpreted as of Lower Wurm and Early Pleistocene age. Two units of massive diamictons with distinctly different weathering characteristics also occur in the vicinity of Cape Town35 (Boelhouwers et al., unpubl. data) and in the mountains of the interior.79

While the origin of lower altitude diamictons remains unclear, more consensus exists on the periglacial nature of slope deposits in the summit region of the Western Cape mountains. Butzer and Helgren14 aver that true solifluction deposits exist at altitudes over 1500 m a.s.l., an observation confirmed by Hagedorn96 for deposits/blockstreams at Groot Winterberg and Matroosberg. Sänger argues for postglacial gelifluction at the summit of Matroosberg (2249 m a.s.l.). Subsequent work on the Matroosberg blockstreams and solifluction mantles has placed their time of formation around the Last Glacial Maximum, mainly by frost creep, under an environment of deep seasonal frost.55 The MAAT is estimated to have been around 0°C, requiring a 7-8°C temperature lowering compared with the present. These temperatures are 1–2°C lower than those documented from speleothem records of Talma and Vogel58 for that period but may reflect local variability.

Foothills of the mountains often have large alluvial fans present. While Booysen25 suggests some of these fans to be of Tertiary age, Sänger44 relates their development to Weichselian flood events resulting from rapid seasonal melt of glacial ice and snow on the mountain summits. While Sänger’s arguments for a Pleistocene glaciation remain problematic (see discussion below), the case for rapid seasonal snowmelt causing alluvial fan building during the Late Pleistocene glacials is supported by Boelhouwers.35 Boelhouwers et al.35,82 highlight the importance of present-day and past debris flow activity on alluvial fans, documenting a major shift in magnitude of debris flows from over 20 000 m³ in the Late Pleistocene/Early Holocene to less than 500 m³, on average, at present.

Quaternary glaciation

General texts on the Quaternary in southern Africa state that this region was not glaciated in this period.85,86 However, the topic has raised much debate and controversy.

Glacial activity in southern Africa during the Quaternary

While evidence for earlier glacial periods in southern Africa (for example, Dwyka Group sediments) is beyond question, literature supporting glaciation during the Quaternary is contentious. A number of researchers have interpreted sediments and landforms as being evidence for Quaternary glaciation. Forms are said to include glacial striations, moraines, kame
moraines, cirques, and glacially polished surfaces (Table 2). The majority of published material either suggests or implies that glaciation was marginal and limited to small plateau glaciers, cirque glaciers and niche glaciers during the Last Glacial Maximum and other cold periods during the Quaternary.65–62 Lewis,90,91 on the other hand, has suggested that there may have been an extremely cold period prior to the Last Glacial Maximum, during which valley glaciers existed in the Eastern Cape Drakensberg. The implications of the latter hypothesis are that temperatures at approximately 40,000 BP were between 19°C and 24°C colder than at present,63–65 a finding that is contrary to the generally accepted values in the Quaternary literature.59,81,85,86

The arguments for Quaternary glacial activity in the escarpment and Lesotho regions of southern Africa are largely based on the notion that Antarctic polar fronts would have been displaced further north,58 thereby increasing winter precipitation in the form of snow.66,92 However, conclusive evidence for the Quaternary remains elusive and contradictory to other proxy information. The apparent lack of conclusive evidence for glaciation or permanent ice has resulted in the generally accepted view that southern Africa was never glaciated during the Last Glacial Maximum (interdisciplinary) research of a 5–10°C drop in temperature and a relatively dry climate.59 The indication is, therefore, that conditions at the Last Glacial Maximum in the Drakensberg, Eastern Cape and Lesotho mountains were likely to have been more arid and colder than present.38 The drier environment would have inhibited periglacial activity.38 It is, thus, possible that the most active landscape-forming process occurred during warmer interglacial periods under warm, moist conditions, rather than during colder and relatively dry periods.38

Beside the problems indicated above, field investigations do not support the presence of glaciers in southern Africa during the Quaternary. Striae identified and said to be of glacial origin in the Eastern Cape Drakensberg38,89 are caused by angular clasts in colluvial mantles moving over and abrading sandstone bedrock (pers. obs.). Further, the macro-scale landscape is clearly not the result of glacial processes.6,72 Sediments in the Drakensberg cutbacks, particularly those in Nhlangeni cutback that are said to be of glacial origin,2,92 are more likely to originate from fluvial incision of deposits that are derived from highly jointed bedrock and do not come from above the escarpment as has been implied.58,92 Topography and ice-mass balance studies indicate that the Nhlangeni deposits and similar ones in KwaNtuba and other passes are not glacial.95 Further, the existence of patterned ground and openwork block deposits at similar aspects and equivalent and higher altitudes that would require a non-glacial palaeoenvironment suggest that the allocation of a glacial origin for cutback deposits is erroneous.90,96 Evidence for the perceived presence of Quaternary glaciation is isolated to a few specific locations90,92 and anomalous with palaeoenvironmental evidence elsewhere in the High Drakensberg and Lesotho mountains.

Until widespread, general evidence of relict glaciation is found in the study area, the palaeoenvironment during the Last Glacial Maximum should be considered to be drier and colder than at present with at least deep seasonal ground freezing.

Western Cape mountains

In the Western Cape, a Weichselian glaciation has been proposed by Sänger,3 who argues for cirque glaciation, based largely on aerial-photo mapping of the Western Cape mountains, from which cirque basins, moraines and outwash fans are identified based on morphological criteria. The analysis is,

<table>
<thead>
<tr>
<th>Landforms and processes</th>
<th>Publications (see list of references)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arête</td>
<td>Sparrow (196461, 196762);</td>
</tr>
<tr>
<td>Cirque</td>
<td>Sparrow (196461, 196762); Harper (196963); Dyer and Marker (197964)</td>
</tr>
<tr>
<td>Fluvio-glacial deposition</td>
<td>Hall (199465); Harney et al. (198666); Grab (199667, 199768); Lewis (199669)</td>
</tr>
<tr>
<td>Glaciation</td>
<td>Harper (196963); Harney and Lewis (1990); Marker (199164); Lewis and Harney (199369); Hall (199465); Grab (199667, 199768); Lewis (199669)</td>
</tr>
<tr>
<td>Glacial erosion (pavements, striations and surfaces)</td>
<td>Harper (196963); Harney et al. (198666); Lewis and Harney (199369); Lewis (199669)</td>
</tr>
<tr>
<td>Glacial polish</td>
<td>Lewis (199669)</td>
</tr>
<tr>
<td>Glacial striation</td>
<td>Lewis (199669)</td>
</tr>
<tr>
<td>Glaciation</td>
<td>Grab (199667, 199768, 200069)</td>
</tr>
<tr>
<td>Hanging valley</td>
<td>Lewis (199669)</td>
</tr>
<tr>
<td>Moraines</td>
<td>Sparrow (196763); Lewis (199669)</td>
</tr>
<tr>
<td>Niche glacier</td>
<td>Marker (199164); Hall (199465); Grab (199669)</td>
</tr>
<tr>
<td>Roché moutonée</td>
<td>Grab (199667, 1997)</td>
</tr>
<tr>
<td>Truncated spur</td>
<td>Lewis (199669)</td>
</tr>
</tbody>
</table>

Table 2. Published material on glacial processes and landforms in the high Drakensberg and Lesotho mountains.4 (Entries represent the best examples from references in the text and the table is, therefore, not a complete record of published material in the study area.)
however, flaved as the steep valleyheads have developed in strength-equilibrium slopes of resistant quartzites, with a spatial distribution determined by structural control. Field inspection of moraines reveal these to be erosional remnants of bedrock related to the African’ erosion surface in the intra-montane basins, based on data by Partridge and Maud.9 While the fans are large and contain coarse debris, suggesting high discharges in the past, they provide no evidence for glacial outwash. Silted pebbles found at higher altitudes are invariably related to outcrops of Pakhuis tillite of Silurian age. Thus, evidence presented to date is easily refuted and no unequivocal indications for Quaternary glaciation in the Western Cape has, as yet, been presented. Instead, the widespread summit detritus, blockstreams and debris slopes point to a dominance of high rates of debris production in the Pleistocene and subsequent mass wasting, with seasonal snowmelt facilitating high-discharge events resulting in substantial debris flows.

Current research problems

The uncertainty regarding palaeoenvironments in the high altitude regions of southern Africa indicates that further research is required. Many of the problems arise from a lack of understanding regarding the specific nature of relic landforms,42 a lack of rigour in research,35 and insufficient data. Suggested hypotheses often lack supportive field data.4,16,42,45,60 Further, it can also be said that there is a general lack of proxy data from the Quaternary.4,16,42,45,60 Periglacial research is particularly affected, where poor spatial and temporal resolution of data, and inconsistent field techniques appear to have resulted in qualitative and contradictory results in the Drakensberg, Eastern Cape and Lesotho mountains.42,45,60,63,69,91 As indicated above, the spatial resolution reported in the periglacial and glacial literature is inadequate. Equally, there is poor temporal resolution within which to place the landforms. Datable evidence of periglacial environments from most sites in the High Drakensberg, Eastern Cape and Lesotho mountains is sparse. The only published data from Lesotho are from sediments in hollows, whose formation has been attributed to glacial and periglacial processes.52,65 These data generally represent sediments that were deposited after the Last Glacial Maximum, thus making conclusive deductions about conditions during the coldest parts of the Quaternary difficult. The absence of datable material is attributed to aridity and rapid incision of landforms in the period after the Last Glacial Maximum.42,62

Among the various obstacles to understanding indicated above, the classification and use of terminology for periglacial and glacial phenomena in southern Africa is problematic.4,22,57 A major influence on the interpretation of periglacial landforms in southern Africa is that, while most other areas where cryogenic activity currently dominates were previously glaciated, it is likely that southern Africa did not experience glacial conditions during the Quaternary. The absence of glacial sediments may thus prevent the use of generic examples, where periglacial activity normally occurs in glacial sediments, as surrogates for southern African conditions. Moreover, it is noticeable that investigations in the Drakensberg, Eastern Cape and Lesotho mountains continue to rely on the ‘classic’ literature to interpret landforms. Thus, some of the main issues that relate to the interpretation of periglacial features in the high altitude regions of southern Africa are:

- Some phenomena are not clearly defined or well developed,3 making classification difficult.
- Confusing terminology exists for many landforms and processes that are attributed to periglacial and glacial processes; for example, rock weathering that occurs at and around the freezing point of water is variously referred to as: freeze–thaw, cryogenic and frost weathering, ice shattering and frost shattering, amongst others.
- Past moisture regimes are difficult to project from modern periglacial forms, especially those of the high mountain areas of the subcontinent.42
- Active cryogenic landforms in the High Drakensberg and Lesotho mountains are generally small in extent and of seasonal occurrence.2,3,52,62
- The rapid backward erosion of the escarpment may have truncated many of the larger glacial and periglacial landforms.44
- A few (in some cases single) occurrences90,99 are used to generalize for the entire study region.
- Interpretation regarding altitudinal zonation of periglacial landforms and Pleistocene snowlines is confusing.90,101
- There is a lack of rigour in southern African periglacial studies.35
- Spatial and temporal resolution of periglacial and glacial evidence in southern African studies is poor.

It is apparent that considerable effort is required to improve the status and scientific image of high altitude southern African Quaternary geomorphology. Improved modelling techniques with computer-aided technology are being used to identify anomalies with respect to the interpretation of field data and then to process available information with a view to providing palaeoenvironmental predictions for southern Africa.3 The qualitative nature of the current literature suggest that future emphasis should be directed towards sedimentary records by means of clay mineral, soil micro-structural and chemical analysis and dating to improve the reliability and accuracy of the interpretations and their spatial and temporal framework.

The above problems are particularly evident in the High Drakensberg and Lesotho mountains; research in the Western Cape is apparently less controversial and of good quality. Quaternary periglacial and glacial research in southern Africa will, thus, provide ample opportunities for palaeoenvironmental research and stimulating debate for the foreseeable future.

We thank the following persons and organizations for their invaluable contributions towards this publication: the National Research Foundation for financial assistance through core grants to both authors; the universities of the Western Cape and Pretoria for financial assistance to the two authors, respectively; the organizers of the 1999 INQUA congress for allowing a session on southern hemisphere periglacial environments; the International Permafrost Association and the Southern African Permafrost group, under whose auspices the INQUA conference sessions were held; the comments and criticism of two referees that helped to improve the scientific quality of the paper; and colleagues of the authors, in particular Paul Sumner, Kevin Hall and Steve Holness, for their comments, advice and assistance during fieldwork.

Periglacial landforms and deposits of Tasmania

Periglacial Research
South African Journal of Science 98, January/February 2002 55

Periglacial landforms and deposits of Tasmania
Eric A. Colhoun

Only limited parts of Tasmania were glaciated during the late Pleistocene. The extra-glacial regions exhibit many landforms and deposits that were developed at least partly by periglacial processes. Block streams, block fields and screes are well developed above 900 m on the dolerite plateaux of central and eastern Tasmania, while slope deposits of angular clasts occur on the siliceous rocks of western mountain areas. Extensive fossil solifluction deposits extend down to c. 500 m in central Tasmania, whereas modern frost-creep terraces and solifluction lobes occur only locally above 900 m in poorly vegetated areas. Active sorted polygons may occur on bare areas down to 600 m and contemporary snowpatch erosion occurs above 1000 m. Fossil ice-pushed shoreline features occur on some lakes on the dolerite Central Plateau, while stabilized terrestrial sand dunes occur at lower altitudes in the Midlands and east. Few of these landforms and deposits are yet well dated, and many may have been formed during several cold stages of the Pleistocene. There is little evidence for Pleistocene permafrost below 1000–1200 m on the island.

Introduction
The definition of many landforms and deposits formed extraglacially mainly during the cold stages of the Pleistocene as periglacial is difficult in Tasmania. This is because of strong temperature gradients between sea level and highland areas, high scarpas and steep slopes inducing cold air drainage and structural geological conditions conducive to slope failure. In addition, records of vegetation history demonstrate major changes during the cold stages with much more surface instability and extensive alpine vegetation in western mountainous regions, and grassland and woodland in eastern areas. Thirdly, lowering of sea level increased the continentality of Tasmania during the cold stages, giving reduced rainfall and a steepened precipitation gradient from west to east across the island. This paper considers the range of extraglacial landforms and deposits developed during the predominantly colder and drier conditions of the Pleistocene, and provides an assessment of the significance and severity of periglacial processes in their development. In so doing, attention is focused on the increased effects of frost action, possible ground-ice development, induced mass movements, snow and lake ice effects, enhanced alluviation, increased aeolian effects, and placement of the forms, deposits and processes within temporal constraints. The locations of field areas are given in Fig. 1 and sites mentioned in the text in Fig. 2.

Tasmanian environments
Tasmania, the most southerly state and one of the most mountainous regions of Australia, exhibits an extensive range of cold climate glacial and periglacial landforms and deposits. Forming the extension of the Australian Eastern Highlands south of Bass Strait and extending from 39 to 42°S, Tasmania consists mainly of rugged mountain ridges, plateaux and grabens (Fig. 1). The western third consists mainly of steep, north–south striking ridges with intervening valleys extensively mantled by rainforests, wet sclerophyll forests, scrub and heath vegetation. Many ridges exceed 1000 m, the altitude of the present treeline, and the highest are 1300–1500 m. The ridges are composed mainly of Precambrian and Palaeozoic quartzite, conglomerate and volcanic rocks, with limestones flooring a number of the valleys. The central and eastern parts of Tasmania comprise extensive plateaux of Jurassic dolerite overlying Triassic sandstones and Permian mudstones. The high plateau areas, notably the Central Plateau, Ben Lomond and Hartz Mountains in the southeast,